Физики вывели формулы для описания процессов в квантовых точках

© Rui SakanoКвантовая точка (желтая), подключенная к двум электродам (синие). Электроны, туннелирующие в квантовую точку от электродов, взаимодействуют друг с другом, образуя высококоррелированное квантовое состояние, называемое «ферми-жидкостью»

Физики вывели формулы для описания процессов в квантовых точках

Квантовая точка (желтая), подключенная к двум электродам (синие). Электроны, туннелирующие в квантовую точку от электродов, взаимодействуют друг с другом, образуя высококоррелированное квантовое состояние, называемое «ферми-жидкостью»

Японские физики разработали математические формулы для описания тока и флуктуаций электронов в квантовых точках. Формулы, опубликованные в журнале Physical Review Letters, могут быть применены для дальнейших теоретических исследований физики квантовых точек, ультрахолодных атомных газов и кварков.

Квантовые точки — наноразмерные проводники или полупроводники — могут стать ключом к реализации квантовых информационных технологий, таких как квантовые компьютеры и квантовая связь.

Физики-теоретики из Городского университета Осаки и Токийского университета разработали математические формулы, описывающие физическое явление, происходящее внутри квантовых точек и других наноразмерных материалов.

Речь идет об «эффекте Кондо». Этот эффект был впервые описан в 1964 году японским физиком-теоретиком Джун Кондо для некоторых магнитных материалов. Теперь же известно, что он имеет место и во многих других системах, включая квантовые точки.

Обычно электрическое сопротивление металлов падает с понижением температуры. Но в металлах, содержащих магнитные примеси, это происходит только до критической температуры. Выше нее сопротивление возрастает при понижении температуры.

Ученые доказали, что при очень низких температурах, близких к абсолютному нулю, спины электронов запутываются с магнитными примесями, образуя облако, которое экранирует их магнетизм. Форма облака изменяется при дальнейшем падении температуры, что приводит к увеличению сопротивления. Тот же самый эффект происходит, когда к металлу прикладываются внешние «возмущения», такие как напряжение или магнитное поле.

Авторы решили составить математическое описание эволюции этого облака. Чтобы описать такую ​​сложную квантовую систему, они начали с состояния системы при абсолютном нуле, к которому применима хорошо зарекомендовавшая себя теоретическая модель ферми-жидкости для взаимодействующих электронов. Затем они ввели поправку, которая описывает реакцию системы на внешние возмущения, и в итоге получили формулы, описывающие электрический ток и его колебания в квантовых точках.

Формулы показывают, что электроны взаимодействуют в подобных системах двумя различными способами, каждый из которых вносят вклад в эффект Кондо. Сначала два электрона сталкиваются друг с другом, образуя квазичастицы, которые распространяются внутри облака. Затем происходит взаимодействие, называемое вкладом трех тел — когда два электрона объединяются в присутствии третьего, что вызывает сдвиг энергии квазичастиц.

«Предсказания формул вскоре можно будет проверить экспериментально, — приводятся в пресс-релизе Городского университета Осаки слова руководителя исследования Акира Огури (Akira Oguri ) из Института теоретической и экспериментальной физики. — Исследования в рамках этого проекта только начались».

Авторы отмечают, что выведенные ими формулы могут быть расширены для понимания других квантовых явлений, таких, например, как движение квантовых частиц через квантовые точки, подключенные к сверхпроводникам.

Источник: ria.ru

Добавить комментарий

Ваш адрес email не будет опубликован.